Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parkinsonism Relat Disord ; 88: 28-33, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102418

RESUMO

INTRODUCTION: Freezing of gait (FOG) is a debilitating feature of Parkinson's disease (PD). Evidence suggests patients with FOG have increased cortical control of gait. The supplementary motor area (SMA) may be a key structure due to its connectivity with locomotor and cognitive networks. The objectives of this study were to determine (1) if SMA connectivity is disrupted in patients with FOG and (2) if "inhibitory" repetitive transcranial magnetic stimulation can decrease maladaptive SMA connectivity. METHODS: Two experiments were performed. In experiment 1 resting-state (T2* BOLD imaging) was compared between 38 PD freezers and 17 PD controls. In experiment 2, twenty PD patients with FOG were randomized to either 10 sessions of real or sham rTMS to the SMA (1 Hz, 110% motor threshold, 1200 pulses/session) combined with daily gait training. RESULTS: (Experiment 1) Freezers had increased connectivity between the left SMA and the vermis of the cerebellum and decreased connectivity between the SMA and the orbitofrontal cortex (pFDR-corr <0.05). (Experiment 2) 10 sessions of active TMS reduced SMA connectivity with the anterior cingulate, angular gyrus and the medial temporal cortex, whereas sham TMS did not reduce SMA connectivity. From a behavioral perspective, both groups showed nFOG-Q improvements (F(4, 25.7) = 3.87, p = 0.014). CONCLUSIONS: The SMA in freezers is hyper-connected to the cerebellum, a key locomotor region which may represent maladaptive compensation. In this preliminary study, 1 Hz rTMS reduced SMA connectivity however, this was not specific to the locomotor regions. Intervention outcomes may be improved with subject specific targeting of SMA.


Assuntos
Cerebelo/fisiopatologia , Conectoma , Transtornos Neurológicos da Marcha/terapia , Córtex Motor/fisiopatologia , Reabilitação Neurológica , Doença de Parkinson/terapia , Estimulação Magnética Transcraniana , Idoso , Cerebelo/diagnóstico por imagem , Terapia Combinada , Terapia por Exercício , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia
2.
Exp Brain Res ; 237(3): 805-816, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30607471

RESUMO

Peripheral sensory stimulation has been used as a method to stimulate the sensorimotor cortex, with applications in neurorehabilitation. To improve delivery modality and usability, a new stimulation method has been developed in which imperceptible random-frequency vibration is applied to the wrist concurrently during hand activity. The objective of this study was to investigate effects of this new sensory stimulation on the sensorimotor cortex. Healthy adults were studied. In a transcranial magnetic stimulation (TMS) study, resting motor threshold, short-interval intracortical inhibition, and intracortical facilitation for the abductor pollicis brevis muscle were compared between vibration on vs. off, while subjects were at rest. In an electroencephalogram (EEG) study, alpha and beta power during rest and event-related desynchronization (ERD) for hand grip were compared between vibration on vs. off. Results showed that vibration decreased EEG power and decreased TMS short-interval intracortical inhibition (i.e., disinhibition) compared with no vibration at rest. Grip-related ERD was also greater during vibration, compared to no vibration. In conclusion, subthreshold random-frequency wrist vibration affected the release of intracortical inhibition and both resting and grip-related sensorimotor cortical activity. Such effects may have implications in rehabilitation.


Assuntos
Ondas Encefálicas/fisiologia , Sincronização Cortical/fisiologia , Eletroencefalografia/métodos , Músculo Esquelético/fisiologia , Córtex Sensório-Motor/fisiologia , Percepção do Tato/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Estimulação Física , Vibração , Punho/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...